Rabies, Suspected Exposure

1. DISEASE REPORTING

A. Purpose of Reporting and Surveillance

1. To assist in the prevention of human cases of rabies.
2. To facilitate rabies post-exposure prophylaxis (PEP) and counseling to those exposed to a rabid, or potentially rabid, animal or human.
3. To ensure capture and confinement of potentially rabid animals involved in human exposure that have a defined observation period (including dogs, cats, and ferrets), or facilitate histological examination of the brain of potentially rabid animals involved in human exposure for animals that cannot be observed.

B. Legal Reporting Requirements

Under the 2011 notifiable conditions rule revisions, the Washington Administrative Code (WAC) was modified such that reporting of all animal bites is no longer required; instead, only those situations in which human exposure to rabies is suspected are reportable to the local health jurisdiction (LHJ). For the purposes of reporting, “Rabies, Suspected Exposure” includes two conditions listed in the 2011 rule revisions:

- Rabies, suspected human exposure (due to a bite from or other exposure to an animal suspected of being infected with rabies); and
- Animal bites (only when human exposure to rabies is suspected).

1. Health care providers: immediately notifiable to local health jurisdiction.
2. Health care facilities: immediately notifiable to local health jurisdiction.
3. Laboratories: Rabies virus (human or animal specimen) immediately notifiable to local health jurisdiction; specimen submission required for any clinical specimen associated with positive result (2 business days).
4. Veterinarians: animal case and suspected human case or exposure immediately notifiable to local health jurisdiction; animal cases (excluding bats) also notifiable to Washington State Department of Agriculture (http://app.leg.wa.gov/WAC/default.aspx?cite=16-70).
5. Local health jurisdictions: notifiable to the Washington State Department of Health (DOH) Office of Communicable Disease Epidemiology (OCDE) within 7 days of case investigation completion or summary information required within 21 days.

C. Local Health Jurisdiction Investigation Responsibilities

1. Begin investigation when suspected human exposure to rabies is reported.
2. Counsel patient and/or health care provider regarding the risk of rabies exposure and need for rabies PEP.
3. As appropriate, facilitate capture and 10-day confinement of dogs, cats, and ferrets involved in a human exposure (see Section 5).

5. Report all confirmed and suspect cases to OCDE (see definitions below) by completing the “Rabies, suspected exposure” case report form (http://www.doh.wa.gov/Portals/1/Documents/5100/210-044-ReportForm-RabiesSuspectedExp.pdf) in the Public Health Issues Management System (PHIMS).

Note: Animal bites for which rabies exposure has either been ruled out (i.e., testing or observation) or is not suspected are not reportable to either the local health jurisdiction (LHJ) or OCDE. If the LHJ receives such reports and chooses to track these in PHIMS, the same form can be used but these cases should be classified as “Not reportable.”

2. THE DISEASE AND ITS EPIDEMIOLOGY

Background

Rabies virus causes acute encephalomyelitis in mammals and the outcome is virtually always fatal. In the United States, 2-3 rabies deaths are reported per year. Only 2 human cases have been diagnosed in Washington in the last 25 years. For more information on human rabies, see the Rabies Surveillance and Reporting Guidelines at: www.doh.wa.gov/Portals/1/Documents/5100/420-072-Guideline-RabiesHuman.pdf.

A. Etiologic Agent

The rabies virus (Family Rhabdoviridae, genus Lyssavirus); several variants (strains)

B. Description of Illness in Animals

Rabid animals can show a range of symptoms, often described as either “dumb” or “furious” rabies. An animal may progress from one state to the other. Dumb rabies is characterized by reclusive behavior, drooling, anorexia, a startled response to sudden noise or light exposure, and frequent licking and biting of the site of the bite due to irritation there. Furious rabies is marked by excitation and marked aggressiveness, notably biting of objects, animals, humans, or even self. Salivation can be profuse due to difficulty swallowing and there is often a change in vocalization (e.g., dog develops an unusual bark). Central nervous system signs of rabies may include paralysis, poor coordination, convulsions and coma. Wildlife may lose their fear of people; animals normally active only between sunset and sunrise may be seen during daylight hours. Infected bats may act strangely (e.g., crawling, hissing).

C. Reservoirs

In the U.S. Pacific Northwest, bats are the primary reservoir species. Other animals (notably potential bat predators such as foxes or cats) are infected only as rare “spillover” from rabid bat populations. Elsewhere in the country, skunks, raccoons and foxes are also reservoirs. In some parts of the world, dogs and other carnivores are important reservoirs.

D. Animals Rabies in Washington State and the Pacific Northwest

Bats are the only known reservoir for rabies in Washington State. Rabid bats are found throughout the state. The percentage of bats in the wild that are infected with rabies is very low (less than 1%), however 4–10% of the sick and injured bats submitted for
testing in Washington are rabid (Table 1). During the past few decades, only a few animal rabies cases have occurred in animals other than bats (Table 2).

Bats are also the primary reservoir for rabies in Oregon, Idaho, and British Columbia; however, rabid non-bat animals have been occasionally detected in these places. Such instances where bat-variant rabies has been identified include: several foxes and 1 coyote (Oregon, 2000–2011); 1 bobcat and 1 skunk (Idaho, 2001 and 2004, respectively); and 4 skunks and 1 cat (British Columbia, 2004 and 2007, respectively). This illustrates that rabies in bats spills over to other wild animals, as well as domestic animals.

<table>
<thead>
<tr>
<th>Year</th>
<th>Rabid bats /Total bats tested (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>12/284 (4%)</td>
</tr>
<tr>
<td>2012</td>
<td>9/221 (4%)</td>
</tr>
<tr>
<td>2011</td>
<td>11/204 (5%)</td>
</tr>
<tr>
<td>2010</td>
<td>14/200 (7%)</td>
</tr>
<tr>
<td>2009</td>
<td>14/311 (5%)</td>
</tr>
<tr>
<td>2008</td>
<td>17/337 (5%)</td>
</tr>
<tr>
<td>2007</td>
<td>22/315 (7%)</td>
</tr>
<tr>
<td>2006</td>
<td>15/273 (5%)</td>
</tr>
<tr>
<td>2005</td>
<td>15/245 (6%)</td>
</tr>
<tr>
<td>2004</td>
<td>20/311 (6%)</td>
</tr>
<tr>
<td>2003</td>
<td>23/229 (10%)</td>
</tr>
<tr>
<td>2002</td>
<td>12/186 (6%)</td>
</tr>
<tr>
<td>2001</td>
<td>22/263 (8%)</td>
</tr>
<tr>
<td>2000</td>
<td>23/330 (7%)</td>
</tr>
</tbody>
</table>

Table 1: Rabid Bats Detected in Washington, 2000–2013

<table>
<thead>
<tr>
<th>Year</th>
<th>Animal type (County)</th>
<th>Rabies Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>Cat (Walla Walla)</td>
<td>Bat-variant</td>
</tr>
<tr>
<td>1994</td>
<td>Llama (King)</td>
<td>Bat-variant</td>
</tr>
<tr>
<td>1992</td>
<td>Horse (Franklin)</td>
<td>Unknown</td>
</tr>
<tr>
<td>1987</td>
<td>Dog (Pierce)*</td>
<td>Unknown history of bat exposure</td>
</tr>
</tbody>
</table>

* infection was not confirmed at CDC

E. Modes of Transmission

Rabies can be spread when infected saliva or central nervous system tissue inoculates broken skin or contaminates mucosa. Most often this occurs via a bite from an animal. All mammals are susceptible to rabies. Person-to-person transmission has never been confirmed via a bite, but has occurred via corneal and organ transplants. Limited evidence suggests rabies might be transmitted by exposure to very large amounts of aerosolized rabies virus (e.g., exposure to millions of bats in a cave or laboratory culture). It is not transmitted by contact with blood, urine or feces, or by touching fur. Drying inactivates the virus.

F. Incubation Period of Rabies in Animals

Dogs, cats, and ferrets have an incubation period 6 months or less based on observational studies (averages: dogs, 3-8 weeks; cats, 4-6 weeks). There are few data about incubation periods in other mammals. Variation in incubation period is due to species exposed, size of viral inoculum, proximity of the bite to the nervous system, and virus variant.
G. Period of Communicability

Infected animals can transmit rabies when the infection has spread to the salivary glands, which typically occurs around or after the time that central nervous system (CNS) signs develop. The rationale for a 10-day confinement period for dogs, cats, and ferrets rests on this observed interval between viral shedding and onset (based on experimental data). If communicable at the time of biting, these species should develop CNS symptoms within 10 days. Confinement for other animal species is not appropriate due to lack of information about their communicability period relative to symptom onset.

3. CASE DEFINITIONS

A. Classification of “Rabies, Suspected Exposure” in PHIMS

Confirmed:

- Human exposed* to an animal that tests positive for rabies
- Public health agency recommends, or concurs with healthcare provider’s (HCP) recommendation, for post-exposure prophylaxis (PEP) administration based on risk assessment of exposure*§

Suspect:

- PEP given by HCP but circumstances are unknown to public health agency so public health is unable to perform risk assessment of the potential exposure*

Not reportable (animal bites without suspected rabies exposure):

- Animal tests negative for rabies (regardless of whether PEP was started)
- Dog, cat, or ferret remains healthy after 10-day observation
- Public health agency assesses risk, concludes no exposure, and thus does not recommend PEP but person insists on receiving PEP
- HCP administers PEP but public health risk assessment concludes no exposure

Note: Animal bites for which rabies exposure is not suspected are not reportable to either the local health jurisdiction (LHJ) or to DOH Office of Communicable Disease Epidemiology, thus do not need to be recorded in PHIMS. However, if the LHJ receives such reports and desires to track these in PHIMS, these should be classified as “Not reportable.”

* Exposures may include bites, circumstances in which bites could not be ruled out (e.g., bat found in a room with a baby or a sleeping person), or non-bites (contamination of wounds, scratches, or mucous membranes with saliva or neural tissue). See section 5A.

§ For risk assessments, assume all bats that cannot be tested are rabid. See section 5A.

4. DIAGNOSIS AND LABORATORY SERVICES

A. Diagnosis

Rabies testing in animals is done using a direct fluorescent antibody (DFA) test. There are no reliable, standardized ante-mortem (live animal) tests that can be used to confirm whether an animal is infected with rabies. Fresh brain tissue (brainstem, cerebellum, and hippocampus) is required for this test, so the animal must be euthanized. The whole bat, the head of a medium-sized animal (e.g., most dogs and cats), and only the brain of larger animals (e.g., cow or horse) should be refrigerated and shipped with regular cold packs as soon as possible after death. The bat or the head may be frozen as a last resort if shipment of the specimen must be delayed. Avoid freeze-thaw cycles; if the animal is already frozen, keep it frozen until and during shipping. Tissues must not be fixed in formalin.

B. Tests Available at the Washington State Public Health Laboratories (PHL)

PHL will perform DFA testing on animals that have potentially exposed a human to rabies. Brain tissue from non-bat animals with evidence of rabies by DFA will be forwarded to CDC for testing with monoclonal antibodies to determine the variant of the rabies virus. Prior approval for all submissions must be obtained from DOH Office of Communicable Disease Epidemiology (OCDE); please call 206-418-5500 to arrange.

In animal-only exposure situations (i.e., cat caught a bat; no humans exposed), the biting animal can be tested for a fee (~$85) at Oregon State University Veterinary Diagnostic Laboratory (541-737-3261; http://vetmed.oregonstate.edu/diagnostic/rabies-fa-exam).

C. Specimen Collection

Guidelines for submitting specimens to the PHL can be found at: http://www.doh.wa.gov/Portals/1/Documents/5100/rabiesspecimenguidelines.pdf. The PHL Virology Lab provides shipping containers, including large sizes.

5. ROUTINE CASE INVESTIGATION

The decision to test an animal and/or recommend rabies post-exposure prophylaxis (PEP) hinges on whether an exposure to rabies is suspected to have occurred. The determination should be based upon the following questions:

- Was there a human exposure?
- What is the risk that the animal in question was shedding rabies virus in its saliva at the time of the exposure?

Under the 2011 notifiable conditions rule revisions, the Washington Administrative Code (WAC) was modified such that reporting of all animal bites is no longer required; instead, only those in which human exposure to rabies is suspected are reportable to the local health jurisdiction (LHJ). The determination of whether there was a rabies exposure may have already been made by the health care provider without the involvement of the LHJ, and not all of the following steps will be a part of every case investigation. Some providers may suspect that a rabies exposure did occur, but the LHJ may disagree after receiving the report and assessing the situation. If the LHJ concludes that a human exposure to rabies has not occurred, the event (animal bite, scratch, etc.) does not need to be reported to DOH (see case classifications above).
A. Was there a human exposure?

An exposure requires that saliva (or central nervous system tissue) of an animal is introduced into bite wounds, open cuts or abrasions in skin, mucous membranes (e.g., eyes, mouth or nose), or scratches. Transmission may occur following exposure to aerosolized rabies virus (e.g., exposure to millions of bats in a cave).

Rabies is not transmitted by contact with blood, urine or feces, by touching fur, or by being sprayed by a skunk. The virus is inactivated when dried. Rabies exposures can be ruled out in these situations.

Special Considerations for Bats

Bat mouths and teeth are very small, thus bat bites may cause only minor injury or may not leave any visible marks. In 1995, a human rabies case occurred in a Washington State resident who had found a bat in the bedroom approximately 2.5 weeks prior to illness onset (http://www.cdc.gov/mmwr/preview/mmwrhtml/00038616.htm). Family members examined the person at the time the bat was found but did not see any evidence of a bite, so this was discounted as an exposure. Such case examples emphasize the importance that all contact with and any situation in which a bat found in a room or bedroom with a person should be evaluated carefully as discussed below.

“The risk for rabies resulting from an encounter with a bat might be difficult to determine because of the limited injury inflicted by a bat bite (compared with more obvious wounds caused by the bite of terrestrial carnivores), an inaccurate recall of a bat encounter that might have occurred several weeks or months earlier, and evidence that some bat-related rabies viruses might be more likely to result in infection after inoculation into superficial epidermal layers. For these reasons, any direct contact between a human and a bat should be evaluated for an exposure. If the person can be reasonably certain a bite, scratch, or mucous membrane exposure did not occur, or if the bat is available for testing and is negative for presence of rabies virus, post-exposure prophylaxis is not necessary. Other situations that might qualify as exposures include finding a bat in the same room as a person who might be unaware that a bite or direct contact had occurred (e.g., a deeply sleeping person awakens to find a bat in the room or an adult witnesses a bat in the room with a previously unattended child, mentally disabled person, or intoxicated person). These situations should not be considered exposures if rabies is ruled out by diagnostic testing of the bat, or circumstances suggest it is unlikely that an exposure took place.” (http://www.cdc.gov/mmwr/PDF/rr/rr5703.pdf).

B. What is the risk that the animal in question was shedding rabies virus in the saliva at the time of the exposure?

The following factors should be assessed: (1) geographic location of exposure (more precisely origin of animal); (2) animal health and behavior; (3) animal vaccination status; (4) circumstances of exposure; (5) likelihood the animal could have been exposed to a rabid animal; and (6) whether the animal can be observed (dogs, cats, and ferrets only) or tested to determine the whether it was rabid. These elements of a rabies risk assessment are discussed in detail below. An algorithm including these points is also available for use at: http://www.doh.wa.gov/Portals/1/Documents/5100/rabiesalg.pdf.
1. **Epidemiology of Animal Rabies in the Place Where the Exposure Occurred**

The known epidemiology of rabies in the geographic location of exposure and origin of the animal (e.g., from Washington, out-of-state, or out-of-country) must be considered because the prevalence of rabies varies both by geographic area and by species within those places. For instance, canine variants of rabies have been eliminated in the U.S., but are still maintained in dog-to-dog transmission cycles elsewhere in the world; so dog bites in some countries carry a much higher risk of rabies exposure. Even within this country, certain rabies variants and associated animal reservoirs occur in geographically definable regions (www.cdc.gov/rabies/location/usa/surveillance/index.html). However, affected areas may expand or contract as a result of virus transmission and animal population interactions and, even in Washington, animals could be imported from endemic areas. If a person is exposed to an animal outside of Washington, the epidemiology of animal rabies in the area where the exposure occurred should be considered.

a. **Bats:** Bats serve as a reservoir for rabies throughout Washington and the U.S.

b. **Dogs, Cats and Ferrets:** Although rabies in dogs and cats is very rare in Washington, domestic animals can be exposed to rabies during encounters with wildlife. Even indoor pets can be exposed, since rabid bats in Washington have been found in people’s homes. In 2002, a rabid cat was identified in Walla Walla with bat variant rabies. Nationally, more cats are reported to have rabies than dogs.

c. **Wild Terrestrial Carnivores (raccoons, skunks, foxes, coyotes, wolves, wolf-dog hybrids, bobcat-cat hybrids, etc.):** Rabies has not been identified in wild carnivores tested in Washington since a rabid coyote was found 1930. Raccoon rabies has never been reported in Washington. Since the 1960s, the only documented rabies in wild terrestrial carnivores occurred in four pet skunks (not truly wild); 2 were illegally imported and the source was out of state; the others had inappropriately been given attenuated live virus rabies vaccine. However, DOH does not perform active surveillance for rabies in wild carnivores. Rabies testing is performed on the small number of wild carnivores that expose a human and are subsequently captured (see Appendix A). Evidence of transmission of bat-variant rabies among non-bat species along with the possibility of translocation of rabid animals from other areas of the country has the potential to rapidly change the epidemiology of rabies in Washington. Because the period of rabies virus shedding in these animals is unknown, these animals must be euthanized and tested rather than confined and observed when they bite humans.

d. **Rodents (mice, rats, squirrels, hamsters, etc.), Lagomorphs (rabbits, hares), and Opossums:** Rabies in rodents, lagomorphs, and opossums is very uncommon in the entire country. In the eastern U.S., raccoon variant rabies occasionally spills over into large rodents, especially woodchucks (groundhogs). According to CDC’s national data (1990-1996), woodchucks accounted for 93% of 371 rabid rodents. Rabies inoculation experiments with opossums (marsupials) in the 1960s found them to be relatively resistant.1

e. **Livestock (cattle, sheep, goats, pigs, horses, llamas, etc.):** Although rabies in livestock is rare, animals can be exposed to rabies during encounters with wildlife. Rabies should be considered in the differential diagnosis of any acute, progressive, fatal neurological illness in livestock imported from areas where terrestrial rabies exists. In 1994, a rabid llama with bat variant rabies was identified in King County and in 1992 a rabid horse was identified in Franklin County (rabies variant unknown).

2. **Animal Health and Behavior**
 a. **Current animal behavior and health status:** Animals exhibiting unusual behavior that might be consistent with rabies (see Section 2B) are more likely to be rabid than animals acting normally. However, signs vary by species, can be subtle or obvious, and can include sudden death with few or no symptoms. Signs of rabies among wildlife cannot be interpreted reliably. The animal behavior and health status are best evaluated by a veterinarian.
 b. **Previous history of biting:** Bites by animals with a history of menacing or biting may reflect the animal’s aggressive personality rather than infection with rabies virus.

3. **Animal Vaccination Status**
 a. Vaccinated dogs, cats, and ferrets are unlikely to become infected with rabies. However, it is possible that veterinary records show the animal is currently vaccinated but it is not in fact immune to rabies due to vaccine inefficacy, vaccine mishandling, or poor documentation. Rabies antibody titers do not indicate immunity. Even if an animal is currently vaccinated, rabies cannot be ruled out.
 b. Rabies vaccines given off-label to other species, including hybrids (e.g. wolf-dogs), are of unknown efficacy and should be disregarded in decisions about PEP.

4. **Circumstances of Exposure**
 a. **Provoked versus unprovoked exposure:** An unprovoked attack by an animal is more likely than a provoked attack to indicate that the animal is rabid. Examples of a provoked bite include startling an animal, running or biking past an animal, trying to capture an animal, or removing food, water, or objects from the animal. Although bites from an injured animal are usually considered provoked, a rabid animal may be more prone to trauma (e.g., being hit by a car due to poor coordination).

5. **Likelihood the Animal Could Have Been Exposed to Another Rabid Animal**
 a. **Feral/Stray Animals:** Feral animals living outdoors have an increased chance of being exposed to other rabid animals, such as bats, as compared to pets which are more likely to be under the owner’s control (see indoor vs. outdoor below).
 b. **Indoor vs. Outdoor Animals:** Strictly indoor-only animals are unlikely to be exposed to a rabid animal, unless bats have been in the home. Thus, the likelihood of an indoor-only animal becoming rabid is much lower than animals that go outside without supervision (e.g., roaming freely or in an outdoor cage or fenced yard).
 c. **Animal import and/or travel history:** Animals that have recently (within the previous 6 months) traveled or lived in areas where rabies is endemic in wild carnivores are more likely to be infected than animals that have not left Washington.
The risk of rabies differs elsewhere in the United States (e.g., raccoon rabies in the east coast, skunk rabies in central states) and internationally (e.g., dog rabies in parts of Asia, Africa, Central and South America, and the Middle East).

6. Can the animal be confined for a 10-day observation period (healthy-appearing dogs, cats, and ferrets only) or is the animal head available for testing?

a. When possible, any healthy-appearing dog, cat or ferret (vaccinated or unvaccinated) that bites a person should be confined and observed for a 10-day period. Extreme care should be used to prevent exposure of additional persons to the confined animal.

 • If there is no change in health or behavior after 10 days, the animal was not shedding rabies virus at the time of exposure and rabies PEP should not be recommended or can be discontinued if it was already started.

 • If signs of rabies develop or the animal dies during the observation period, or if the animal must be euthanized for humane reasons, the local health department should be notified and the animal should be immediately tested for rabies.

b. Because the period of rabies virus shedding in wild animals and hybrids (offspring of wild animals crossbred to domestic dogs and cats) is unknown, these animals must be euthanized and tested rather than confined and observed when they expose humans.

c. It is not known how long livestock shed rabies virus, so the observation period cannot be applied to livestock. Evaluate potential human exposures on a case-by-case basis.

6. DECISION TO ADMINISTER RABIES PEP

The decision to administer rabies post-exposure prophylaxis (PEP) should be made between the health care provider (HCP) and the patient. Rabies PEP is imperative for any person exposed to an animal that tests positive for rabies.

A. Bat Exposure

In all instances of bat to human contact where rabies transmission is under consideration, the bat in question should be collected and submitted for rabies testing. Rabies PEP is recommended for all individuals exposed to a bat, unless the bat tests negative for rabies.

B. Dog, Cat or Ferret Exposure

If a dog, cat, or ferret is not available for a 10-day observation or testing, the decision to start PEP is based on the circumstances of the exposure and the behavior and history of the animal (see Section 5). PEP should be recommended if the animal was behaving unusually (i.e., symptoms compatible with rabies), especially if the bite was unprovoked. Educate the patient and HCP about the local epidemiology of rabies. The decision can be difficult since the risk of disease is low but the disease is fatal. You may consult with Office of Communicable Disease Epidemiology (OCDE) at 206-418-5500.
C. Wild Terrestrial Carnivore Exposure

According to the ACIP (MMWR 2008;57:RR-3), “Raccoons, skunks, and foxes are the terrestrial carnivores most often infected with rabies in the U.S. Suggestive clinical signs of rabies among wildlife cannot be interpreted reliably. All bites by such wildlife should be considered possible exposures to rabies virus. Post-exposure prophylaxis should be initiated as soon as possible following exposure to such wildlife, unless the animal is available for diagnosis and public health authorities are facilitating expeditious laboratory testing, or if the brain tissue from the animal has already tested negative.”

As discussed in Section 5-B(1c), the risk of acquiring rabies after exposure to wild terrestrial carnivores in Washington is low. If an animal cannot be tested, rabies PEP should be recommended if the animal was rabid-acting or the bite was unprovoked. The patient and/or HCP should be educated about the epidemiology of rabies in wild terrestrial carnivores in Washington to assist in their decision about PEP. This decision can be difficult since the risk of disease is low but the disease is nearly always fatal.

D. Rodent (mice, rats, squirrels, voles, etc.), Lagomorph (rabbits, hares), and Opossum Exposure

Rabies PEP is rarely indicated after a rodent, lagomorph, or opossum bite. If the animal was exhibiting signs consistent with rabies (see Section 2B) or there were unusual circumstances, test the animal; if the animal is not available for testing, rabies PEP should be considered. The period of rabies virus shedding in these animals is unknown.

E. Livestock Exposure

There are no national guidelines; each case should be evaluated on an individual basis.

7. RABIES POST-EXPOSURE PROPHYLAXIS

Essential components of rabies post-exposure prophylaxis (PEP) are wound treatment and administration of both human rabies immune globulin (HRIG) [only for previously unvaccinated persons] and a series of doses of rabies vaccine.

A. Wound Treatment

Immediately wash all bite wounds and scratches with soap and water and, if available, a virucidal agent such as povidone-iodine solution. Administer tetanus prophylaxis and measures to control bacterial infection as indicated.

B. Post-Exposure Prophylaxis (PEP)

Rabies vaccination should be administered according to the most current Advisory Committee on Immunization Practices (ACIP) recommendations. The July 2009 provisional recommendations to reduce the number of rabies vaccine doses given in the PEP series from 5 to 4 doses for unvaccinated persons who are immunocompetent. The Centers for Disease Control and Prevention (CDC) adopted these recommendations in March 2010 (http://www.cdc.gov/mmwr/PDF/rr/rr5902.pdf). Additional ACIP recommendations are at: http://www.cdc.gov/mmwr/PDF/rr/rr5703.pdf.

Two cell-culture vaccines are available in the United States for rabies pre- and post-exposure prophylaxis in humans. They are equally safe and effective.
• Human diploid cell vaccine (HDCV) (Imovax®) is available from Sanofi Pasteur (1-800-822-2463) (www.vaccineshoppe.com/image.cfm?doc_id=5983&image_type=product_pdf)

• Purified chick embryo cell vaccine (PCEC) (RabAvert™) is available from Novartis Vaccines and Diagnostics (1-800-244-7668) (https://www.novartisvaccinesdirect.com/Rabavert/RabavertAbout).

Two manufacturers provide HRIG (for post-exposure use only) in the United States.

• HyperRab™ S/D available from Talecris Biotherapeutics Bayer Biological Products (1-800-243-4153) (http://www.talecris-pi.info/inserts/hyperrab.pdf)

The appropriate protocol for rabies post-exposure prophylaxis depends on the exposed patient's previous rabies vaccination history:

1. For people who have never been vaccinated against rabies:

 • One dose (20 IU/kg) of human rabies immune globulin (HRIG) is administered on day 0. If anatomically feasible, the full dose of HRIG should be thoroughly infiltrated into the wounds and surrounding tissues, such as the area of the face that was bitten. Any remaining volume should be injected intramuscularly at a site distant from vaccine administration; typically the deltoid muscles are reserved for vaccine and are not used for administering HRIG. Use a sufficiently long needle to assure intramuscular injections. HRIG should never be administered in the same syringe or in the same anatomical site as rabies vaccine.

 AND one of two vaccine options:

 • For immunocompetent persons only: four doses of cell culture rabies vaccine at 1 mL/dose administered intramuscularly in the deltoid muscle on days 0, 3, 7, and 14. Alternating deltoid sites may be more comfortable for the patient. The anterolateral aspect of the upper thigh can be used in infants/young children. Use a sufficiently long needle to assure intramuscular injections. Do not administer in the gluteal region due to potential for diminished immunologic response.

 • For persons who are immunosuppressed (see definition below*): five doses of cell culture rabies vaccine at 1 mL/dose administered intramuscularly in the deltoid muscle on days 0, 3, 7, 14, and 28. The anterolateral aspect of the upper thigh can be used in infants/young children. Use a sufficiently long needle to assure intramuscular injections. Do not administer in the gluteal region due to potential for diminished immunologic response. After the fifth dose obtain one or more serum samples to test for rabies virus neutralizing antibody titers using rapid fluorescent focus inhibition test (RFFIT) to ensure an acceptable response has occurred. Titers can be obtained through:

 o Kansas State University (785)-532-4298
 • http://www.ksvdl.org/rabies-laboratory/rffit-tests/
 o Atlanta Health Associates (770)-205-9091 or (800)-717-5612
 • http://www.atlantahealth.net/
Generally, antibody levels peak around 2-3 weeks after completing a primary rabies vaccination series. There is no "protective" titer. In animal studies, survival against rabies virus infection is more likely to occur the higher an animal's titer at time of infection, but titer is not a definite indicator of survival. For example, in one study of orally vaccinated raccoons 39% of animals with no detectable titer at infection (<0.05 IU/mL) survived, compared to 90% of animals with a titer between 0.05-0.49 and 100% of animals with a titer >0.5 IU/mL. Mounting a rapid antibody response is often a better indicator of surviving exposure.

If an immunocompromised patient has a low titer after the fifth dose of vaccine, the local health jurisdiction, the patient, and the patient’s healthcare provider should jointly consider the option of providing a sixth booster dose in the context of the patient’s current condition and treatments. Consider the exposure risk, current titer level, current immunosuppressive condition or treatments, and any risks associated with a dose of vaccine. If it is determined that a sixth dose will not interfere with treatments or place the patient at increased risk of adverse events, and concern for exposure is high, this booster dose should be provided.

* Immunosuppression can be due to a variety of conditions including congenital immunodeficiency; bone marrow transplant; human immunodeficiency virus infection; leukemia; lymphoma; malignancy; or therapy with alkylating agents, antimetabolites, radiation or high dose corticosteroids. For some of these conditions, all affected persons will be immunocompromised; for others, health care providers will ultimately have to determine the degree to which the immune system is compromised. Certain medical conditions, such as renal failure, diabetes, asplenia, or cirrhosis, may increase the patient's risk for certain infectious diseases and, when such conditions are long-standing or associated with complications, may dampen the immune response of these patients and result in relative immunosuppression. The 5-dose vaccine regimen should be considered for patients with these conditions. Among the elderly a lower immune response, though not a lack of response, may also warrant consideration of the 5-dose regimen. Consult OCDE as needed (206-418-5500).

Note: “If HRIG was not administered when vaccination was begun on day 0, it can be administered up to and including day 7 of the PEP series” (http://www.cdc.gov/mmwr/pdf/rr/rr5902.pdf). After the seventh day, HRIG is not indicated because an antibody response to cell culture vaccine is presumed to have occurred.

2. For persons with previous pre-exposure vaccination or post-exposure prophylaxis:

If prior vaccinations were given following one of the ACIP-recommended regimens (with cell culture vaccines available in the United States after 1980) or if persons received another vaccine regimen and had a documented adequate rabies virus-neutralizing antibody response:

- Two doses of cell culture rabies vaccine (1 mL) administered intramuscularly in the deltoid muscle on days 0 and 3 after a rabies exposure.
- HRIG should not be given to previously vaccinated persons to avoid possible inhibition of the relative strength or rapidity of an expected anamnestic response.
C. Timing of Rabies Post-Exposure Prophylaxis

All wounds from potentially rabid animals should be immediately cleaned as described above. According to the ACIP, the “administration of rabies PEP is a medical urgency, not a medical emergency,” (www.cdc.gov/mmwr/PDF/rr/rr5703.pdf). National recommendations are that persons bitten by animals known to be or suspected to be rabid should be given PEP urgently since the time which can pass between an exposure and effective administration of PEP is unknown. The incubation period is highly variable in humans; with the reported U.S. median of ~35 days; range: 5 days to >2 years (www.cdc.gov/mmwr/pdf/rr/rr5902.pdf). PEP should not be delayed unnecessarily.

Factors to consider when determining how quickly to begin PEP include the likelihood that rabies was transmitted and the anatomic proximity of the bite to the central nervous system. In general, if the animal can be tested within 24 hours or if it is a low-risk situation, then PEP can be delayed until testing results are available. However, if animal testing is substantially delayed, PEP should be started and can be discontinued later if results are negative. Washington State Public Health Laboratories will usually have animal testing results within one working day of specimen arrival. If you have difficulty deciding whether or not to delay PEP until the animal is tested, consult the Office of Communicable Disease Epidemiology (OCDE) at 206-418-5500.

D. Deviations from Recommended Vaccination Schedules

Arrangements should be made so that patients do not deviate from the recommended PEP vaccination schedule. However, occasionally lapses are unavoidable. If a delay of a few days occurs, vaccination schedule should be resumed as if the patient were on schedule by giving missed dose and resetting the count to the appropriate dose day. For instance if the dose is scheduled for day 7 but the patient does not return until day 9, the day 7 dose should be given and counted as day 7; the correct interval should be maintained until the next dose (i.e., 7 more days until the new day 14 dose). When longer delays occur, serologic testing using the RFFIT assay (Section 7B) should be performed 7 to 14 days after the final dose in the series to assess immune status.

E. Post-Exposure Prophylaxis outside the United States

Patients exposed to rabid animals in foreign countries may start a PEP regimen with a vaccine that is unavailable in the U.S. These vaccines may include purified vero cell vaccines (e.g., Verorab™, Imovax – Rabies vero™, or TRC Verorab™), purified duck embryo vaccine (e.g., Lyssavac N™), and different formulations of human diploid cell vaccine (e.g., Rabivac™) or purified chick embryo cell vaccine (e.g., Rabipur®). The regimens for PEP using these vaccines may differ from the regimen used in the U.S., particularly if the vaccines are administered intradermally rather than intramuscularly.

Additional prophylaxis might be necessary. Rabies virus neutralizing antibody titers using the RFFIT assay (Section 7B) from specimens collected 1 to 2 weeks after pre-exposure or post-exposure prophylaxis are considered adequate if complete neutralization of challenge virus at a 1:5 serum dilution occurs. (MMWR 2008;57:RR-3).

When possible, request by e-mail or fax a photograph or copy of the packaging from the vaccine that was administered abroad and any health care visit notes, documentation of
vaccine administration, or receipts from the health care visit. This documentation may aid in the assessment of whether additional prophylaxis is necessary.

Be aware that counterfeit pharmaceuticals are not uncommon in some parts of the world. The ACIP guidelines recommend repeating the PEP series if regimens not used in the US are used. Since these regimens have not been approved by the FDA these individuals are generally treated as “unvaccinated” and the series is repeated as though it was never received. Alternatively, the traveler could be given a new first dose of vaccine and serum could be drawn to check the rabies virus neutralizing antibody titers before giving HRIG to determine if it is necessary.

If you are confident that the overseas vaccine was a bona fide cell culture vaccine, then either the full series can be accepted or any remaining doses needed in the series can be continued using cell culture vaccine in the U.S.; serology is not warranted. Titers by RFFIT should be checked if there were significant deviations in the prophylaxis schedule or if a non-cell culture vaccine was used. Consult OCDE as needed at 206-418-5500.

F. Adverse Reactions Associated with Post-Exposure Prophylaxis

Prophylaxis should not be discontinued due to reactions without considering the patient's risk of acquiring rabies. Health care providers should report any unusual or severe adverse reaction attributed to HRIG or vaccine to the vaccine manufacturer and the local health jurisdiction, which should notify OCDE, and to the Vaccine Adverse Events Reporting System (VAERS: http://vaers.hhs.gov/). For additional information, please refer to both current ACIP recommendations for preventing rabies in humans: www.cdc.gov/mmwr/PDF/rr/rr5703.pdf and www.cdc.gov/mmwr/PDF/rr/rr5902.pdf.

8. MANAGING SPECIAL SITUATIONS

A. Dogs, Cats, or Ferrets Exposed to a Potentially Rabid Animal

When a domestic animal has direct contact with a known or suspected rabid animal, it is considered to have had a potential exposure to rabies. There are currently no licensed biologics for post-exposure prophylaxis of domestic animals, and there is evidence that the use of vaccine alone will not reliably prevent the disease in these animals. It is important to capture and submit the suspect rabid animal for testing if possible. Animal-only exposure testing is referred to Oregon State University Veterinary Lab (Section 4B).

If the exposed dog/cat/ferret is currently vaccinated (see Section 8C) against rabies:

1. Immediately take the animal to a veterinarian for a booster rabies vaccination.

2. Confine the dog, cat, or ferret under owner’s control with close observation for 45 days. The animal should be kept at home or in a building, pen, or escape-proof enclosure. The animal should only be removed from confinement on a leash and under supervision of a responsible adult.

3. Any sign of illness or behavioral change should be reported to the local health jurisdiction (LHJ) immediately and the animal should be taken to a veterinarian. If the veterinarian thinks the symptoms are suggestive of rabies, the animal should be euthanized and tested for rabies.

If the exposed dog/cat/ferret has never been vaccinated against rabies:
1. Consider immediate humane euthanasia; OR
2. Set up strict quarantine of the animal for 180 days (6 months).
 a) If the quarantine is in an animal control or veterinary facility, the owner should be made aware of the cost, and the facility should agree to the terms of confinement as decided by the local health officer.
 b) If the quarantine is at home, it should be set up with double door/gate enclosures to prevent against escape and direct contact with people and other animals.
 c) A veterinarian should vaccinate the animal on entry into the quarantine, or 1 month prior to release, to assure the animal is currently immunized when released.
3. Any sign of illness or behavioral change should be reported to the LHJ immediately and the animal should be taken to a veterinarian. If the veterinarian thinks the symptoms are suggestive of rabies, euthanize and test the animal for rabies.

Animals that have been vaccinated in the past but are overdue for rabies vaccines should be handled on a case-by-case basis (e.g., time elapsed since last vaccination, number of prior vaccinations, local rabies epidemiology) but are generally considered unvaccinated.

B. Livestock Exposed to a Potentially Rabid Animal

Livestock currently vaccinated with a vaccine approved by USDA for that species should be revaccinated immediately and observed for 45 days following exposure to a potentially rabid animal. Consult the public health veterinarian on such exposures. The DOH Environmental Public Health-Zoonotic Disease (EPH-ZD) Program is available Monday through Friday during office hours only at 360-236-3385; if unable to reach the public health veterinarian, consult OCDE at 206-418-5500.

C. Rabies Vaccine for Animals

There are formulations of rabies vaccine licensed for cats, dogs, and ferrets, as well as horses, cattle, and sheep. An animal’s vaccine status is up-to-date if the initial vaccination was administered at least 28 days prior or if the booster vaccinations have been administered in accordance with the most current Compendium of Animal Rabies Prevention and Control (http://www.nasphv.org/Documents/RabiesCompendium.pdf). A booster vaccination should be administered 1 year after the initial vaccination regardless of the animal’s age at first vaccination. An animal is considered currently vaccinated immediately after a booster vaccination.

D. Exposure to a Human with Rabies

Although person-to-person transmission of rabies by bite has never been confirmed, PEP is recommended for persons who have exposure (Section 5A) to a human rabies case. Consult OCDE (206-418-5500) regarding PEP of persons exposed to a human with rabies.

9. ROUTINE PREVENTION

A. Human Pre-exposure Immunization

Rabies pre-exposure vaccinations are administered to individuals such as laboratory workers testing for rabies virus, veterinarians and their staff, wildlife biologists,
rehabilitators, animal control officers who routinely have contact with stray domestic, exotic, and/or wild animals, and travelers staying for prolonged periods in rabies enzootic areas where medical care may be difficult to obtain. Pre-exposure immunization consists of three cell culture rabies vaccinations given on days 0, 7, and 21 or 28. For information regarding checking rabies titers, see the most current ACIP recommendations (http://www.cdc.gov/mmwr/pdf/rr/rr5902.pdf).

B. Prevention Recommendations

1. Be a responsible pet owner
 - Keep vaccinations up-to-date for dogs, cats and ferrets as mandated by WAC 246-100. This is important not only to keep your pets from getting rabies, but also to provide a barrier of protection to you, if your animal is bitten by a rabid animal.
 - Keep your pets under direct supervision so they do not come in contact with wild animals. If your pet is bitten by a wild animal, seek veterinary assistance.
 - Call your local animal control agency to remove any stray pets from your neighborhood. They may be unvaccinated and could be infected by the disease.
 - Spay or neuter your pets to help reduce the number of unwanted pets that may not be properly cared for or regularly vaccinated.

2. Avoid direct contact with unfamiliar animals
 - Enjoy wild animals (e.g., raccoons, skunks, and foxes) from afar. Do not handle, feed, or unintentionally attract wild animals with open garbage cans or litter.
 - Never adopt wild animals or bring them into your home. Do not try to nurse sick wild animals. Call animal control or a wildlife rescue agency for assistance.
 - Teach children never to handle unfamiliar animals, wild or domestic, even if they appear friendly. "Love your own, leave other animals alone" is a good principle.
 - Prevent bats from entering living quarters or occupied spaces in homes, churches, schools, or other similar areas, where they might come in contact with people or pets.
 - When traveling abroad, avoid direct contact with wild animals, especially dogs in developing countries. Rabies is common in many countries in Asia, Africa, and Latin America where dogs are the major reservoir of rabies. Before traveling, consult a health care provider, travel clinic, or your health department about the risk of rabies, pre-exposure prophylaxis, and how to handle an exposure, should it arise.

3. Keep bats out of your home
 Some bats live in buildings, and there may be no reason to evict them if there is little chance for contact with people. However, bats should always be prevented from entering living areas of your home. For assistance with “bat-proofing” your home, contact an animal control or wildlife conservation agency. If you choose to do the “bat-proofing” yourself, here are some suggestions:
 - Carefully examine your home for holes that might allow bat entry into your living quarters. Any openings larger than a ¼ inch x ½ inch should be caulked.
- Use window screens, chimney caps, and draft-guards beneath doors to attics; fill electrical and plumbing holes with stainless steel wool or caulking; and ensure all doors to the outside close tightly.

- Additional "bat-proofing" can prevent bats from roosting in attics or buildings by covering outside entry points. Observe where bats exit at dusk and exclude them by loosely hanging clear plastic sheeting or bird netting over these areas. Bats can crawl out and leave, but cannot re-enter. After the bats have been excluded, the openings can be permanently sealed.

ACKNOWLEDGEMENTS

This document is a revision of the Washington State Guidelines for Notifiable Condition Reporting and Surveillance published in 2002 which were originally based on the Control of Communicable Diseases Manual (CCDM), 17th Edition; James Chin, Ed. APHA 2000. We would like to acknowledge the Oregon Department of Human Services for developing the format and select content of this document.

References: www.cdc.gov/rabies

UPDATES

January 2011: First issuance of this guideline. Prior to 2011, similar content was provided in the “Animal Bites and Rabies PEP” guideline. The Legal Reporting Requirements section reflects the 2011 Notifiable Conditions Rule revision.

June 2012: Case definitions were clarified in Section 3. Section 5C was updated to include additional historic animal rabies data. Wording was revised throughout to shorten the guideline.

December 2014: The tables in section 2D were updated to include additional historic animal rabies data through 2013. A section on post-exposure prophylaxis in immune-compromised individuals was added to section 7B(1). A section on repeating PEP in international travelers was added to section 7E. Appendix A was updated through 2013.
APPENDIX A

Washington State Animals Tested for Rabies, 1988-2013 *(Rabid animals in parentheses)*

<table>
<thead>
<tr>
<th>Year</th>
<th>Bat</th>
<th>Cat</th>
<th>Dog</th>
<th>Ferret</th>
<th>Raccoon</th>
<th>Skunk</th>
<th>Rodent</th>
<th>Lagomorph</th>
<th>Other Wild</th>
<th>Other Domestic</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1988</td>
<td>69 (4)</td>
<td>165</td>
<td>110</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>400</td>
</tr>
<tr>
<td>1989</td>
<td>102 (9)</td>
<td>124</td>
<td>91</td>
<td>20</td>
<td>9</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>372</td>
</tr>
<tr>
<td>1990</td>
<td>63 (4)</td>
<td>104</td>
<td>82</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>14</td>
<td>4</td>
<td>290</td>
</tr>
<tr>
<td>1991</td>
<td>90 (9)</td>
<td>105</td>
<td>96</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>19</td>
<td>2</td>
<td>349</td>
</tr>
<tr>
<td>1992</td>
<td>73 (6)</td>
<td>132</td>
<td>90</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td>14</td>
<td>6 (1)*</td>
<td>359</td>
</tr>
<tr>
<td>1993</td>
<td>68 (1)</td>
<td>122</td>
<td>95</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>2</td>
<td>10</td>
<td>13</td>
<td>346</td>
</tr>
<tr>
<td>1994</td>
<td>58 (14)</td>
<td>105</td>
<td>90</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>0</td>
<td>16</td>
<td>14 (1)†</td>
<td>312</td>
</tr>
<tr>
<td>1995</td>
<td>263 (15)</td>
<td>140</td>
<td>114</td>
<td>12</td>
<td>8</td>
<td>1</td>
<td>23</td>
<td>3</td>
<td>15</td>
<td>18</td>
<td>597</td>
</tr>
<tr>
<td>1996</td>
<td>257 (13)</td>
<td>104</td>
<td>101</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>14</td>
<td>3</td>
<td>20</td>
<td>12</td>
<td>530</td>
</tr>
<tr>
<td>1997</td>
<td>780 (51)</td>
<td>155</td>
<td>118</td>
<td>7</td>
<td>17</td>
<td>4</td>
<td>15</td>
<td>2</td>
<td>18</td>
<td>11</td>
<td>1127</td>
</tr>
<tr>
<td>1998</td>
<td>447 (27)</td>
<td>126</td>
<td>109</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>19</td>
<td>16</td>
<td>743</td>
</tr>
<tr>
<td>1999</td>
<td>334 (25)</td>
<td>103</td>
<td>71</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>561</td>
</tr>
<tr>
<td>2000</td>
<td>330 (23)</td>
<td>105</td>
<td>60</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>522</td>
</tr>
<tr>
<td>2001</td>
<td>263 (22)</td>
<td>111</td>
<td>93</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>490</td>
</tr>
<tr>
<td>2002</td>
<td>186 (12)</td>
<td>99 (1)</td>
<td>53</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>9</td>
<td>376</td>
</tr>
<tr>
<td>2003</td>
<td>229 (23)</td>
<td>137</td>
<td>72</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>474</td>
</tr>
<tr>
<td>2004</td>
<td>311 (20)</td>
<td>141</td>
<td>70</td>
<td>3</td>
<td>13</td>
<td>6</td>
<td>11</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>571</td>
</tr>
<tr>
<td>2005</td>
<td>245 (15)</td>
<td>132</td>
<td>66</td>
<td>3</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>10</td>
<td>4</td>
<td>480</td>
</tr>
<tr>
<td>2006</td>
<td>273 (15)</td>
<td>105</td>
<td>70</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>482</td>
</tr>
<tr>
<td>2007</td>
<td>315 (22)</td>
<td>132</td>
<td>97</td>
<td>1</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>581</td>
</tr>
<tr>
<td>2008</td>
<td>337 (17)</td>
<td>143</td>
<td>76</td>
<td>1</td>
<td>10</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>9</td>
<td>11</td>
<td>595</td>
</tr>
<tr>
<td>2009</td>
<td>311 (14)</td>
<td>133</td>
<td>90</td>
<td>1</td>
<td>12</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>9</td>
<td>573</td>
</tr>
<tr>
<td>2010</td>
<td>200 (14)</td>
<td>103</td>
<td>63</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>9</td>
<td>10</td>
<td>407</td>
</tr>
<tr>
<td>2011</td>
<td>204 (11)</td>
<td>87</td>
<td>51</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>368</td>
</tr>
<tr>
<td>2012</td>
<td>221 (9)</td>
<td>98</td>
<td>54</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>7</td>
<td>9</td>
<td>402</td>
</tr>
<tr>
<td>2013</td>
<td>282 (12)</td>
<td>80</td>
<td>65</td>
<td>0</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>459</td>
</tr>
<tr>
<td>Total</td>
<td>6313 (407)</td>
<td>3091 (1)</td>
<td>2147</td>
<td>148</td>
<td>255</td>
<td>68</td>
<td>221</td>
<td>23</td>
<td>281</td>
<td>219 (2)</td>
<td>12766 (410)</td>
</tr>
</tbody>
</table>

* Horse

† Llama

Rodents include: beaver, chinchilla, chipmunk, degu, gerbil, gopher, hamster, marmot, mouse, muskrat, nutria, porcupine, prairie dog, rat, squirrel, vole, woodchuck

Lagomorphs include: rabbit and pika

Other domestic include: burro, cattle, goat, horse, llama, mule, pig, sheep, zebra

Other wild include: badger, bear, bison, bobcat, cougar, coyote, deer, fox, kinkajou, lynx, marten, mink, mole, monkey/non-human primate, ocelot, opossum, otter, seal, shrew, sugar glider, weasel, wolf, wolf-hybrid, zorilla (striped polecat)