Key Takeaways

- There is increasing evidence for person-to-person transmission both in and outside of China.
- While an origin for the virus has not been officially identified, current evidence points to bats with a reservoir in snakes.
- As more modelling and predictive studies are published, caution must be used when interpreting as the assumptions used to construct these models can be flawed.

Transmission

- A new case of illness was identified in a 27 year-old male from Vietnam who had not travelled to China. He had, however, spent three days with his parents in a shared hotel room after their return from travel in Wuhan, China. The father was diagnosed with 2019 n-CoV as well.
- Incubation period was estimated as <3 days for this case with strong evidence of person-to-person transmission.

 Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam (Jan 28, 2020). NEJM Correspondence. DOI: 10.1056/NEJMc2001272

 - A hospital-based case study in Shenzhen, Guangdong province among six family members who travelled to Wuhan provides further evidence of person-to-person transmission.

Modelling and Prediction

- Authors built a transmission model for the outbreak. Note that the model is limited by the assumptions made in constructing it. Key predicted measures are:

 - R_0 of 3.6 - 4.0
 - Only 5.1% (95% CI 4.8-5.5) of Wuhan infections are identified, meaning around 95% are going fully undetected.
 - By February 4, 2020 the model predicts:

 - Over 190 thousand cases in Wuhan alone.
 - Countries of greatest risk for imported infections will be Thailand, Japan, Taiwan, Hong Kong, and South Korea.
 - Even with near perfect travel restrictions to and from Wuhan, the outbreak outside of Wuhan would be reduced by only 24.9%.

- Authors used International Air Transport Association data to quantify traveler volume originating from Wuhan in 2018 from Jan-march, accounting for roughly 90% of all commercial travel. They present these data alongside Infectious Disease Vulnerability Index scores for high-volume-receiving countries. Authors identified no U.S. airports suggesting volume of travel from Wuhan to the U.S. is less than to many other regions.
Origins, Reservoir, and Virus Background

- Researchers continue to note a gap in knowledge around disease transmission patterns, noting that while previous CoV outbreaks have often centered around nosocomial infections, this may not be the case for 2019 n-CoV. Apparent lower pathogenicity compared to SARS is called out as a potential threat for widespread transmission globally.

 Munster et al. (Jan 24, 2020). A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment. NEJM. DOI: 10.1056/NEJMp2000929

- Using various analytic techniques, researchers found that 2019 n-CoV falls into the betacoronavirus genus, along with SARS-CoV, vat SARS-like CoV, and other coronaviruses. Virus isolation, cytopathic effects, and morphology are described.

 Zhu et al. (Jan 24, 2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. NEJM. DOI: 10.1056/NEJMoa2001017

- Chinese researchers conducted a sequence analysis and found that 2019-nCoV appears to be a recombinant virus between the bat coronavirus and a coronavirus of unknown origin, with the most likely wildlife reservoir being snakes. Study findings also suggest a “homologous recombination within the viral receptor-binding spike glycoprotein, which may determine cross-species transmission from snake to humans.”

 Ji et al. (Jan 2020). Homologous recombination within the spike glycoprotein of the newly identified coronavirus 2019-nCoV may boost cross-species transmission from snake to human. Med Virology. doi: 10.1002/fut.22099

- In of 41 cases of 2019 n-CoV hospitalized by Jan 1, 2020 in Wuhan, clinical symptoms and diagnostic findings are described.

 Huang et al. (Jan 24, 2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. https://doi.org/10.1016/S0140-6736(20)30183-5

- A Chinese research team reports that a previously identified coronavirus of bat origin shares 96% of its genome with 2019 n-CoV. These two viruses differ substantially from other known coronaviruses, including SARS-CoV and MERS CoV, suggesting it is likely that 2019 n-CoV may also originate in bats.

 Zhou et al. (Jan 23 2020). PRE-PRINT. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. doi: https://doi.org/10.1101/2020.01.22.914952

- China-based researchers provide background on general coronavirus genome structure, replication, pathogenesis, treatment, and prevention.
