

INDOOR AIR MONITORING

November 2023 • School Environmental Health & Safety Fall Workshop

Indoor Air Monitoring

Planning for Indoor Air Monitoring – Ali Boris, WA DOH

Indoor CO₂ monitoring – Becky Doe, WA DOH

Indoor PM_{2.5} and CO₂ monitoring – Orly Stampfer, WA DOH

Monitoring for vaping – Elizabeth Jakab, PSWCT&UP, Ali Boris, WA DOH, Stephanie Tortorelli, PSESD, Shannon Marshall, TPS

Planning for Indoor Air Monitoring

Ali Boris, MS, PhD Indoor Air Quality Specialist Washington DOH

How many of you are already monitoring?

Planning or would like to monitor?

What is indoor air monitoring?

Collection, monitoring, measurement, and **evaluation** of indoor air quality data to take appropriate action and make improvements¹

- More than just placing a device
 - Data to be viewed, actions to be taken
- Use "low-cost sensors" (also called "monitors")
 - Lower data quality, lower power, higher time resolution than "reference monitors" used by researchers, regulatory

Consumer Monitors

Reference Monitor

¹ Berkeley Lab webinar on School IAQ Management; South Coast AQMD presentation; image: Air Quality Sensors | Indoor Environment

Common IAQ Concerns in Schools ("Parameters")

Particulate matter (PM) from:

- Smoke from fires
- Traffic, industry
- Dust ex: art and shop activities
- Pollen
- Harmful gases:
 - Carbon monoxide (CO)
 - Volatile Organic Compounds (VOCs):
 - From solvents, cleaners, arts, building materials, cooking, buses...
 - Ozone (O_3) , nitrogen dioxide (NO_2)

Vaping

- Insufficient ventilation:
 - CO₂ as proxy
- Mold-Conducive Conditions:
 - Temperature
 - Relative Humidity
- Indoor Environmental Quality:
 - Temperature
 - Relative Humidity
 - Noise
 - Light

Bold: more accepted technologies in indoor sensors

Multi-Parameter Sensors

- Some devices contain multiple sensors.
- Each parameter needs intention and resources.
 - Different locations, solutions, actions, etc.
- Perhaps plan for phases:
 - Prioritize concerns by risk, expand to other concerns
 - Work toward prevention, IAQ management

Why monitor indoors?

- To detect changes in a pollutant
 - From outside ex: PM from wildfire smoke
 - From inside ex: CO, NO₂ from gas stove
- To start actions such as safety protocols or increased ventilation
- To demonstrate need (or success!)

Sources: <u>Berkeley Lab webinar</u> on School IAQ Management, <u>Air Sensor Technology and Indoor Air Quality | US EPA</u> Images: South Coast AQMD AQ-SPEC Sensor Detail, Ali Boris - DOH Washington State Department of Health | 8

When should we monitor?

- Do we know what our concern is?
 - May be from complaint, inspection/survey, event (s.a. building commissioning)
 - "We Can't Manage What We Don't Measure"
 - Information is powerful, but are we ready to manage what we measure?
 - Be aware of marketing, have a plan and resources
 - Idea: Start with loan (later slide) or pilot
- Will data inform our actions?
 - What will we do with the data? Source control, ventilation, and filtration are still needed.
 - Will a sensor achieve our goal? Limitations: accuracy, timing, sensitivity, drift...
 - Example: TVOCs: Is that freshly baked cookies or floor cleaner?
 - Do we have the resources in place?
 - Monitoring requires time, people, funding (upfront, data, maintenance)
 - Plan for handling information

Washington State Department of Health | 9

Image: Scott Burbells, WA DOH (Lake Chelan)

A Plan

- What's our goal?
- How do we set up?
 - Where? Resource: EPA's Guide to Siting and Installing Air Sensors
 - Who needs training?
- What do the numbers mean and how do we use them?
 - Trends/thresholds to look for and actions
 - There are no IAQ standards but guidance for CO₂, PM_{2.5}, T, RH
- How will we communicate?
 - "Counting makes you accountable"
 - Who sees the data, and who makes decisions?

Available Resources

More resources on indoor air monitoring for later

- Practical Webinar: <u>Implementing an IAQ</u> <u>Monitoring Program | HGSC</u>
- Good basic info: <u>Low–Cost Air Pollution</u> <u>Monitors and Indoor Air Quality | US EPA</u>
 - Advanced: <u>EPA's Air Sensor Guidebook</u>, esp. Ch. 3
- PM how-to: <u>WA Children and Youth Activities</u> <u>Guide for Air Quality | WA DOH</u> - appendices
- Sensor evaluations: <u>Sensor Performance Data</u> <u>South Coast AQMD AQ-SPEC</u>
- Email alerts with funding, webinars: <u>LBL</u>
 <u>Efficient and Healthy Schools</u>
 - Webinar on School IAQ Management
- Ask your community!
 - Us, schools, local health, clean air agency

Image: Videos on Air Sensor Measurements, Data Quality, and Interpretation | US EPA

Available Resources: Air Monitors for Loan

- Tool Lending Library | Smart Buildings Center
 - For building owners, managers, professionals in WA/OR. 1-4 weeks. Ventilation/P Drop/CO₂, T, RH, light, PM, CO, multi-parameter. <u>PSWCT&UP and SBC Demo December 7th!</u>
- Wildfire Smoke Air Monitoring Response Technology (WSMART) <u>Pilot | US EPA</u>
 - Work with a state, local, or tribal air agency. Covers gaps in areas affected by wildfire. PM_{2.5}, CO, TVOCs, BC – stationary, mobile.
- EPA/LBL Efficient & Healthy Schools
 - For schools. PM, CO₂, T, RH. Email <u>EHSC@lbl.gov</u>.
- Some companies do trials...
- Talk with your local health and clean air agency. Some have started to loan sensors.

What Makes a Good Sensor? Some thoughts for later

Guidebook on Air Quality Sensors | SC AQMD

Think about your goals.

- Low Limit of Detection is the lowest concentration the sensor can detect.
- Low Error/Bias/Accuracy (like MAE) is how close a sensor's measurements are to "true" (a reference monitor).
 - Sensors can drift over time.
- High Linearity (like R²) gives an idea of how proportional a sensor's measurements are to a reference monitor.
- Appropriate Range is the concentration range (high, low) the sensor can measure.
- Appropriate **Operating Conditions** (temperature, humidity)
- Few Interferents are other chemicals or conditions that will affect the sensor's measurement
- Bonus: Annual calibrations

Questions & Discussion

Thank You

Ali.Boris@doh.wa.gov

564-669-0730

Indoor Air Quality Specialist

School Environmental Health and Safety, Indoor Air Quality Program Environmental Public Health Division Washington State Department of Health

schoolehs@doh.wa.gov

www.doh.wa.gov/schoolenvironment

INDOOR CO2 MONITORING

Becky Doe, MS, CIC, CIH Industrial Hygienist/Infection Preventionist, WA DOH

Why Measure CO₂?

- CO₂ is a useful surrogate for assessing adequate dilution ventilation
- Included in updated CDC ventilation guidance (May 2023):
 - Use portable CO₂ monitors to help you determine how stale or fresh air is.
 - Readings above 800 ppm suggest that you may need to bring more fresh, outdoor air into the space.

What are the Sources of CO₂ in a Classroom?

- Most Important- <u>People</u>
 - Students age 5-8 produce 0.0043 liters/second
 - Students age 10-17 produce 0.0070 liters/second
 - Adult teachers produce 0.0122 liters/second

From Persily & Polidoro, Table 2, NIST Technical Note 2213 Indoor Carbon Dioxide Metric Analysis Tool

*These are average values. Specific rate depends on sex, age, body mass and activity level

- Minor sources which may contribute
 - Any source of combustion (stove, candle, infiltration from outside)

Important Considerations

- Compare to Outside Measurements
- Measure in Center of Room
- Make sure it is out of breathing zone of occupants
- Don't measure near air supply
- Helpful to log over a day if possible
- Concentration is a function of:
 - Room Size
 - Ventilation Rate
 - Occupancy
 - Age and Activity Level

What a Typical Day Might Look Like

Example Classroom CO₂ Data

Source: Collaborative on Health and the Environment Webinar https://www.healthandenvironment.org/ webinars/96581

AIR MONITORING IN SCHOOLS AND CHILD CARE FACILITIES USING LOW-COST SENSORS

ORLY STAMPFER

What is a low-cost sensor?

- Instrument that measures gases and/or particulate matter
- Cost ~\$100 to \$2000
- Usually designed for general public use

PM2.5 or Fine particulate matter

- Exposure to PM2.5 impacts lung, heart, and brain health
- Children are more vulnerable to health risks than adults
- Examples of indoor and outdoor sources of PM2.5 at a school:

How PM2.5 measurements can help

- Identify areas of the school that could use supplemental air filtration
- Get an idea of how well the building air filtration is working
 - Helpful to have both indoor and outdoor measurements
- Make decisions during periods of bad air quality, like wildfire smoke. For example:
 - Should we keep children indoors?
 - Should we keep windows and doors closed?
 - Is air quality bad even indoors? Should play be limited to lighter-intensity activities?

CO₂ (Carbon Dioxide)

- CO₂ indoors comes from people breathing
- If the amount of outdoor air coming inside is the same, but more people are present indoors, CO₂ levels will rise
- Without considering other ways besides ventilation to reduce the spread of airborne diseases, CO₂ levels can give you an idea of the potential for spreading airborne diseases
- Using other methods to reduce disease risk, like vaccination and masking, are still important even if ventilation is high

How CO2 measurements can help

- Identify areas of the school that could use more ventilation
- Increasing ventilation means bringing in more outside air
 - Open windows or doors and increase the movement of air inside the building by using fans and opening interior doors
 - Increase the amount of outside air coming in through the HVAC system
 - Balance with PM2.5 when outdoor air quality is bad

Sensor benefits and challenges

Benefits:

- More affordable
- Localized information
 - Outdoors at a school
 - Indoors throughout a school
- Immediate information

Challenges:

- Data quality issues
 - Accuracy
 - Maintenance
 - Siting
- Wifi or other connectivity issues
- Difficult to interpret short-term and immediate data
- Can be time consuming

Immediate information can be useful to make decisions about activities

10-minute PM2.5 air quality during the two worst wildfire smoke days of 2022 in Tacoma

Examples of immediate information

Sensor with a near real-time display

Handheld sensor with a near realtime display

"Trend" (~30-minute) AQI category from Purple Air sensors displayed on the EPA Fire and Smoke map Short-term information can be useful in identifying ventilation and filtration needs

% of Time in CO2 Levels by Location of the CO2 sensor

Examples of short-term information

UTCDateT	mac_addr	firmware_	hardware	current_t	ecurrent_h	current_d	pressure	adc	mem	rssi	uptime	pm1_0_cf	pm2_5_c	pm10_0_0	pm1_0_a	t pm2_5_at	pm10_0_a	pm2.5_aq
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	69	1010.32	C	18808	-73	89792	43.66	72.16	78.34	31.36	50.23	63.2	160
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	69	1010.28	C	18808	-70	89911	43.93	70.39	78.32	31.48	49.52	63.18	159
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	69	1010.33	C	18808	-71	90031	43.87	74.68	79.02	31.36	50.83	63.45	161
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	69	1010.27	C	18640	-71	90151	44.13	73.06	78.68	31.55	50.43	63.51	160
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 95	69	1010.31	0	18640	-72	90271	43.98	71.59	77.59	31.35	49.87	62.87	160
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	69	1010.29	0	18808	-72	90391	42.59	72.48	78.89	30.63	49.8	63.26	160
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 97	7 70	1010.31	0	18808	-69	90511	43.6	71.02	76.49	31.07	49.42	62.09	159
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 96	5 70	1010.28	0	18808	-70	90631	43.23	71.52	76.34	30.95	49.61	62.05	160
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 97	70	1010.27	0	18808	-72	90751	42.91	70.89	77.53	30.79	49.19	62.62	159
2022/10/1	48:3f:da:a	7	2.0+OPEN	71	L 97	70	1010.28	C	18808	-70	90871	43.55	71	77.64	31.13	49.4	62.64	159

	Carbon	Temperature	Relative	Atmospheric
Time(dd/mm/yyyy)	dioxide(ppm)	(°C)	humidity(%)	pressure(hPa)
30/04/2023 11:33:37 AM	524	16.7	60	1006.5
30/04/2023 11:38:37 AM	520	16.7	60	1006.5
30/04/2023 11:43:37 AM	525	16.7	60	1006.5
30/04/2023 11:48:37 AM	524	16.7	60	1006.3
30/04/2023 11:53:37 AM	520	16.7	60	1006.3

US EPA PM2.5 AQI (US EPA)

One Hour Average

PurpleAir.com

Using immediate vs. short-term information

Immediate (minutes, < 1 hour):

- Open or close windows/doors
- Identify current actions that might be contributing to air pollution indoors
- Make decisions about activities happening soon
 - Indoor vs. outdoor
 - Avoiding certain areas of the school
 - Level of intensity
 - Duration

Short-term (hours, days, weeks):

- Identify ventilation and filtration successes and needs
- Compare across different areas of the school
 - Identify rooms with generally better or worse filtration and ventilation
- Compare different schools to each other
- Time consuming:
 - Repeating measurements
 - Downloading and viewing data

- However, they only represent a snapshot in time
 - Outdoor air pollution (PM2.5)
 - Ventilation system settings
 - Use of portable air cleaners (PM2.5)
 - Window/door opening
 - Occupancy
 - Activities

Data quality issues are a challenge with sensor use

PM2.5 air quality during the two worst wildfire smoke days in Tacoma of 2022: October 19th and 20th Corrected and uncorrected Purple Air data compared with regulatory monitor data

Siting sensors

More ideal

- Out in air generally representative of what people are breathing
- Plugged into power strip
- Out of reach of children

Less ideal

- Air may get trapped and be less representative of room in general
- Popular outlet
- May be in reach of some children

Washington Children and Youth Activities Guide for Air Quality

- Examples of applications of sensor use in the <u>guide</u>:
 - Viewing localized information
 - Assessing PM2.5 levels along transportation routes
 - Choosing alternative locations for activities
 - Adjusting activity intensity level or duration
 - Deciding when to open or close windows
 - Most useful for decisions about activities happening soon (within ~next hour)
- Sensor tools:
 - Handheld or stationary sensor for decisions indoors (can also use outdoors)
 - Sensors on the Fire and Smoke map for decisions outdoors
- Cautions:
 - Do not compare uncorrected sensor data to the Air Quality Index
 - Difficult to interpret comparisons between data averaged over different time intervals
 - Sensor displays vary (for example, PM2.5 concentration vs. AQI)

Sensor performance evaluations

South Coast Air Quality Management District: Air Quality Sensor Performance Evaluation Center

http://www.aqmd.gov/aq-spec/evaluations/criteria-pollutants/summary-pm

- Lab results can give an indication of performance under more extreme conditions
- Evaluations are specific to sensor model
- Some sensors detect multiple pollutants, but only certain pollutants are evaluated
- Many sensors on the market not represented here
- Some sensors may have publicly available wildfire smoke correction factors one example is Purple Air
- If you would like help interpreting this table, please contact me: orly.stampfer@doh.wa.gov

Thank you

Tacoma-Pierce County Health Department team members:

Jackie Busby

Reanna Bettencourt

Elodia Andres Cornelio

Kathy Ross

Thank you to the child care facility staff!!

This project was supported by cooperative agreement EH20-2005 funded by the Centers for Disease Control and Prevention.

To request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, please call 711 (Washington Relay) or email civil.rights@doh.wa.gov.