INTRODUCTION

- Needed to establish a linkage process between COVID-19 case data and vaccine records to better identify vaccine breakthrough cases.
- Initially used a deterministic linkage technique because it was quick and simple to set up.
- Deterministic linkage <u>became increasingly</u> inadequate as it was too inflexible to capture inexact record matches, which disproportionally failed to link people belonging to minority groups.
- This became especially problematic as the use of the linkage results expanded to include predictive modeling of COVID-19 and inform public policy.
- To reduce existing surveillance biases, an <u>alternative linkage technique was necessary to</u> establish a more robust surveillance system.

METHODS

Washington State's Center for Heath Statistics (CHS) machine learning-based classification method was proposed. Uses two machine learning models: Radial Support Vector Machine (SVM) Random Forest (RF)

Models were trained on vaccine and case data collected from Washington State residents. Testing was conducted on all historical COVID-19 case and vaccine records and underwent extensive QA prior to, during, and after it was transitioned into production. Posttransition QA was conducted at two time points: Nov. 2021 and Apr. 2022.

RESULTS

The machine learning linkage captured more links among every race and ethnicity group relative to the deterministic linkage with the largest proportional increase among non-White and/or Hispanic/Latino groups.

Number of SVM + RF links and percent increase of links by ethnicity (maroon bars) and race (teal bars) using SVM+RF compared to deterministic linkage

Transitioning to a machine learning linkage vielded 11-38% more links between COVID-19 case and vaccine records compared to a deterministic linkage. The biggest increase was among minority groups.

Summary of linkage method QA in Nov. 2021 vs. Apr. 2022								
	Α	В	С	D	E	F	G	
QA Time Point	Number of records*	Linkage method	Number of links	Number of linkage disagreements (links not captured by the other method)**	Sample size of model disagreements for review	Number of false links among sample	Estimated false discovery rate assuming model agreements are correct: (D • (F/E)) / C	
Nov. 2021 (pre-Omicron)	5,018,916 vaccine records 1,402,141 case records	Deterministic SVM + RF	736,564 820,441	90 84,060	90 1,000	40	0.005%	
Apr. 2022 (post-Omicron)	5,697,536 vaccine records	Deterministic $SVM + DE$	876,778 1 012 424	962 112 522	962	139	0.016%	
	2,179,497 case records		⊥,∠⊥З,434	TT2,5Z2	4,000	'+ /	U.LL/0	

* Records included in the linkage will be larger than reported values in Washington State as the inclusion criteria for the linkage differed from reporting criteria

** The difference between C & D columns for SVM + RF fields will not equal the C column for the deterministic linkage method as there was different inclusion criteria between the linkage methods

DOH 422-265 March 2023, to request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, please call 711 (Washington Relay) or email doh.information@doh.wa.gov

CONTACT Seth Rothbard, MPH Seth.Rothbard@doh.wa.gov

*****Poster was awarded the Outstanding **Poster Presentation Award at the CSTE 2023 Conference**

Seth Rothbard, Chunyi Wu, Alex Cox, Meredith Cook, Sofia Husain, Terra Wiens, Isaiah Reed, Annie Khanani, Sean Coffinger

CONCLUSION Deterministic linkage strategies are insufficient for equitable surveillance when compared to a machine learning based-classification. This insufficiency was highlighted during the Omicron wave.

Improving COVID-19 case and immunization record linkage via non-probabilistic machine learningbased classification

tage	Methods				
Aodel rategy	 Methodology adapted from Washington State CHS. Radial Support Vector Machine & Random Forest models. Both must agree. This strategy demonstrated several advantages compared to other types of linkages such as: links non-exact matching records while maintaining a low error rate, can be improved via QA, runs relatively quickly and manual burden is low, and follows statistical assumptions. 				
Aodel aining	Used a nestled sampling technique . First a random sample of 10,000 COVID-19 case and vaccine record pairs in Washington State was taken. Five rounds of sampling without replacement was carried out representing a total of about 5,500 record pairs . Each round of sampling was followed by manual classification whether the record pair was a true link and models were trained based on those results.				
/lodel esting	The models were applied to all historical COVID-19 case and vaccine data. A field summarizing all distance metrics within a record pair was created to aid quality assurance and future manual review.				
ality surance	 Three groups, totaling over 2,400 record pairs were identified for QA: 1. Records containing common names which were not linked. Type II error check 2. Records linked despite overall high distance scores. Type I error check 3. Records linked despite name and sex disagreements. Type I error check 				

DISCUSSION

Transitioning to a machine learning linkage **increased** the number of links, especially among non-White and Hispanic/Latino groups. The increased number of links was associated with a slightly higher false linkage rate. While the rate of false links did increase, the real-world impact of this lower specificity resulted in a small amount of manual review. Model specificity could be improved by including more identifier linking variables. The higher yield of links was **consistent over time** based on QA analysis from Nov. 2021 and Apr. 2022.

The machine learning linkage enabled the WA DOH to better assess the vaccination status of all **COVID-19 cases** among other key surveillance efforts.