
W A S HIN G T O N STATE DEPARTM ENT OF H EALTH 

Hyperblock 

 

 

Unsupervised Hyperdimensional Fuzzy Blocking for Equitable Public 
Health Entity Resolution 

 

Sean Coffinger, MA 

Health Statistics Manager 

Center for Health Statistics, DCHS 

Washington State Department of Health 

 

 

 
 

 

DOH 422-286 April 2025 

To request this document in another format, call 1-800-525-0127. Deaf or hard of hearing customers, 

please call 711 (Washington Relay) or email doh.information@doh.wa.gov. 

mailto:doh.information@doh.wa.gov.


Table of Contents 

Contents 

Introduction ...........................................................................................................3 

Methods .................................................................................................................4 

Results ....................................................................................................................8 

Discussion ..............................................................................................................8 

References ............................................................................................................9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

NOTE/ACKNOWLEDGEMENTS: (Option to include information about report and/or names and 

titles of authors below TOC) 



Hyperblock 

3 

 

Introduction 
Entity Resolution (ER) is a foundational task of data integration and aims to detect entities with different 

information that correspond to the same object [1]. In public health and associated research, we often aim 

to merge databases containing various records collected by multiple sources. This particular ER task is 

referred to here as “record linkage” and has the specific aim to match records from one source with 

another.  

 

Each record linkage process typically comprises five distinct steps: data preprocessing, blocking (or 

indexing) and filtering, comparison, classification, and evaluation [2]. This study is entirely focused on 

optimizing the second procedure, blocking/indexing and filtering. After preprocessing, which standardizes 

and cleans input data, blocking/indexing aims to reduce the volume and/or search space for candidate 

comparison. Filtering is then applied to further restrict the number of pairwise comparisons necessary for 

comparison and classification [3]. These procedures are essential for optimizing linkage processes and 

building sustainable pipelines when dealing with big data [4]. Whether it be done by partitioning the data 

into several blocks [5] or sorting similar records based on custom criteria [6], the data must be segmented 

to allow all true matching records to be compared while minimizing the number of cumulative pairwise 

comparisons necessary to recall all true matching records. 

 

Several effective non-learning, supervised, and unsupervised blocking methods have been previously 

proposed [2]. Standard blocking and iterative blocking form the basis for many implemented public health 

record linkage processes. These strategies assign blocking keys according to predetermined criteria based 

on the values in various features. The logic can be as simple as a single exact match between sources (i.e., 

exact date of birth match is the most frequently implemented blocking strategy in our state) or more 

complex using multiple layers of fuzzy logic or string distances to create multiple blocking keys. These 

basic methods can be tuned to streamline robust linkages with high recall; however, the necessary volume 

of inclusion required to achieve high recall remains very large. On the other hand, if the method is too 

strict, recall will be low for record pairs with higher rates of inexactness, which disproportionally impacts 

underrepresented subgroups [7]. 

 

A plethora of supervised methods have also been proposed: e.g., Token Blocking [8], Attribute Clustering 

Blocking [9], and Semantic Graph Blocking [10]. These methods are very effective and efficient; however, 

they require supervision (through training or direct intervention) and computational expertise. Highlighted 

by COVID-19, we have seen many public health jurisdictions relying on antiquated data systems, 

underfunded and depleted informatics workforces, and limited capacity to modernize [11]. An optimal 

solution for the public health sector must be simple, deployable, and generalizable. Unsupervised methods 

can enable near real-time blocking and can be generalizable, distributable, and sustainable. M. Kerjriwal 

and D.P. Miranker have developed a few robust unsupervised methods [12, 13], but here we propose a 

fundamentally different unsupervised approach that emphasizes equitable recall at the cost of some 

precision while being easily retrofitted into existing fuzzy-join procedures.  

 

Furthermore, like many other industries, public health systems rely on multiple stacked systems with 

intermediate pipelines. Different jurisdictions, health entities, private operations, and public services all 

vary in the robustness and efficiency of these often-convoluted systems. Due to the variability observed 

across public health data systems and data flow, errors caused by human intervention can present 

themselves at multiple stages prior to data linkage. The most common means of comparing information 

for both blocking and linkage involves string comparisons. These string comparisons can be as simple as 

the number of shared letters/numbers or as complex as cosine vector similarity scores. Many linkages 
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from start to finish use comparative values at the text level to account for the variability in a pair of true-

linking records with some degree of inexactness. Other methods go beyond text-based methods, like 

Soundex, which has been used for years to capture similar-sounding identifiers that may not match 

lexically. This leap to sensory-based similarity metrics has roots across many disciplines but is lacking in 

entity resolution blocking techniques.  

 

Here, we aim to contribute to the library of blocking and filtering methods for data linkage strategies by 

introducing a simple unsupervised blocking procedure, which we term Hyperblock. Here we demonstrate 

how Hyperblock can block and filter two data sources effectively when the rate of inexactness between the 

two databases is high. For this case study, we will link Washington state marriage events with Washington 

state death certificates. We evaluate this method against the most common established blocking 

procedures by comparing recall and total block sizes, while disaggregating by race/ethnicity to 

demonstrate the equity impact of robust public health blocking strategies. Our goal is to introduce 

Hyperblock as a simple, distributable, implementable solution that prioritizes equitable recall while 

minimizing volume compared to commonly practiced public health methods. 

Methods 
All computations were performed in R version 4.1.3 [14]. Running the linkage was a Microsoft Azure 

Virtual Machine (OS windows 10) with dual 18 core Intel® Xeon® Platinum CPUs and 144GB of physical 

RAM.  

Washington state marriage and death certificates were queried from Washington Health and Life Events 

System (WHALES) database and initially matched by exact social security numbers available in each 

relevant table. Once joined, the resulting data frame represented known true-links between the two 

sources, with the assumption that exact social security number matches provide suitable criteria for 

ground truth testing. Only three identifier features were selected from each data source to use for 

downstream blocking: first name, last name, and date of birth (DOB). Additionally, race and ethnicity 

variables were extracted from the death database for downstream race/ethnicity disaggregation. All values 

were standardized: capitalized, punctuation removed, non-standard letters converted into standard Latin 

alphabet, date of births standardized and validated, and double values (e.g. double surnames) were 

concatenated. The final data set representing known true-links between the two sources totaled 51,401 

links. Table 1 displays the links disaggregated by race/ethnicity designations (White/Non-Hispanic, Non-

White and/or Hispanic, or Missing Race/Eth) as well as the proportion of inexactness present in true-link. 

To be considered an inexact true-link, one or more of the three identifier fields must not be exact matches. 

Individuals with any missing or invalid identifier fields were removed from the analysis and those with one 

or more missing race and/or ethnicity fields were counted as such. 
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Table 1 -  

Race/Ethnicity True-Links 

(n) 

% Exact First 

Name 

% Exact Last 

Name 

% Exact 

DOB 

White/Non-Hispanic 40,290 95.7% 70.0% 96.7% 

Non-White and/or 

Hispanic 

7,751 93.7% 69.0% 95.4% 

Missing Race/Ethnicity 3,360 93.0% 70.8% 92.6% 

Total 51,401 95.25% 69.91% 96.26% 

After preprocessing, each name field from both marriage and death records were segmented into q-grams 

with a length of two, hereby denoted as bigrams. Each character field then populated a sparse binary 

string consisting of all bigram possibilities (26 characters x 26 characters = 676 bigram possibilities). If 

the name possessed one or more of a certain bigram, that corresponding bigram would be given a value of 

1 in the string. If it did not possess a certain bigram, a value of 0 is designated. Date features were treated 

differently, with a string possessing of all possible day, month, century and year as various features (31 

days + 12 months + 2 centuries + 100 years = 145 date features). DOBs were encoded in the same binary 

way as names depending on corresponding values; however, to account for month and day format 

switches present in many cultures (Month/Day/Year or Day/Month/Year format switches) and common 

transcription errors, neighboring days and valid switches were given a value of 0.5.  

Two total manifolds were created: one containing text identifiers (First and Last Name) and one containing 

numeric values (DOB). To build the text identifier manifold, the encoded sparse name strings were 

subjected to two rounds of uniform manifold approximation and projection (UMAP). UMAP parameters 

were set at default according to the R package umap [15], except for the number of nearest neighbors, 

which was set at 15. The first UMAP reduced the 676-feature string down to 128 features, then the 

second UMAP consolidated the string even further down to 4 dimensions. The DOB manifold used a single 

iteration of UMAP, reducing the number of dimensions directly to 4 from 145. At this point, each identifier 

possesses a set of 4-dimensional coordinates (X, Y, Z, W). These manifolds were then collected at the 

record level, and each record possessed a total of 12 coordinates derived from one of the two manifolds.  

Next, density-based spatial clustering of applications with noise (DBSCAN) was employed to cluster each 4-

dimensional manifold. Each record was assigned a cluster derived from the R package dbscan [16] using 

default parameters, apart from eps being set at 0.15 and the minimum points being reduced to 2.  

Cluster-inclusion then determined blocking, where records sharing two or more clusters were included as 

potential links to be compared by the classification algorithm downstream. The process described in the 

methods is diagramed in Figure 1. 
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Figure 1 – Manifold dimensionality reduction toward cluster blocking 

With a ground-truth established via social security numbers, we evaluate the number of true links captured 

by this blocking methodology, disaggregated by race and ethnicity. Additionally, we can evaluate the 

volume required to do so and compare it with various other methods commonly implemented at public 

health agencies. Here, we compare Hyperblock to the following: 

1. No Blocking: The fully inclusive model assumes no blocking step and includes all possible pairwise 

comparisons 

2. Exact-DOB: Exact-DOB requires DOB to match exactly 

3. Fuzzy-DOB: fuzzy-DOB methods allow 1 or 2 characters of disagreement measured by Hamming 

distance 

4. Full-fuzzy methods: defined as the fuzzy agreement between two or more identifier variables 

measured by Levenshtein/Hamming distance less than or equal to 2. We compare inclusion 

criteria of 1/3 and 2/3, identifying feature matches in Table 3.  

a. For example, to be included in “Full Fuzzy (Levenstein/Hamming ≤ 2, 1+ Feature Matches), 

one of the identifiers (first name, last name, DOB) must possess a Levenstein/Hamming 

distance less than or equal to 2. 

To illustrate this clearly, Table 2 displays the criteria and feature comparisons of the strategies compared 

in Table 3.  
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Table 2 - 
Method Inclusion Requirements Feature Comparisons 

  DOB First Name Last Name 

No Blocking All pairwise 

comparissons included 

None None None 

Exact Match DOB Exact match of DOB Exact Match None None 

Fuzzy DOB (Hamming 

≤ 1) 

Fuzzy match of DOB Fuzzy Match of 

Hamming ≤ 1 

None None 

Fuzzy DOB (Hamming 

≤ 2) 

Fuzzy match of DOB Fuzzy Match of 

Hamming ≤ 2 

None None 

Full Fuzzy 

(Levenstein/Hamming 

≤ 2 , 2+ Feature 

Matches) 

Any two features fuzzy 

match 

Fuzzy Match of 

Hamming ≤ 2 

Fuzzy Match of 

Levenstein ≤ 2 

Fuzzy Match of 

Levenstein ≤ 2 

Full Fuzzy 

(Levenstein/Hamming 

≤ 2 , 1+ Feature 

Matches) 

Any one feature fuzzy 

match 

Fuzzy Match of 

Hamming ≤ 2 

Fuzzy Match of 

Levenstein ≤ 2 

Fuzzy Match of 

Levenstein ≤ 2 

Hyperblock      (2+ 

Feature Matches) 

Any two feature 

hyperblock match 

Cluster Match Cluster Match Cluster Match 

 

Here, we exclude advanced methodologies outlined in the introduction due to our research objective, 

target audience and results presented below. 
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Results 
Hyperblock identified 1810 name clusters and 667 DOB clusters. 
 

Table 3 - 
 Block Size 

(Volume) 

True-Links Included in Blocks (% Recall) 

Method Total Links to be 

Compared 

White/Non- 

Hispanic Links 

Non-White and/ or 

Hispanic Links 

Missing 

Race/Eth Links 

No Blocking 2,642,062,801 100% 100% 100% 

Exact Match DOB 167,998 96.7% 95.4% 92.6% 

Fuzzy DOB (Hamming ≤ 1) 3,801,669 99.1% 98.6% 96.5% 

Fuzzy DOB (Hamming ≤ 2) 48,278,657 99.5% 99.2% 97.6% 

Full Fuzzy 

(Levenstein/Hamming ≤ 2 , 

2+ Feature Matches) 

86,983 98.9% 97.9% 96.5% 

Full Fuzzy 

(Levenstein/Hamming ≤ 2 , 

1+ Feature Matches) 

13,442,853 100% 100% 100% 

Hyperblock       

(2+ Feature Matches) 

18,415,992 100% 100% 99.9% 

 

Hyperblock outperformed many of the rudimentary blocking strategies, including all DOB-based blocking 

logic strategies. However, performance was comparable to “Full Fuzzy” strategies, and was outperformed 

by the single feature match strategy. Performance was gauged by the equitable inclusion of links across 

race/ethnicity disaggregation and the minimization of overall volume. 

Discussion 
Hyperblock sought to provide a more generalizable, unsupervised blocking approach that aimed to remove 

any possibility of practitioner bias. We hypothesized that this strategy would more equitably capture links 

in minoritized subpopulations while maintaining a low volume. The strategy was able to achieve this aim; 

however, it did not perform as well as more basic strategies in both of these objectives.  

 

Additionally, Hyperblock aimed to be a simple implementation of hyperdimensional blocking for a simple 

comparison task. We believe we achieved that objective, but the strategy remains far more complicated to 

implement compared to Full Fuzzy methods, which once again outperformed Hyperblock. 

 

Improvements in encoding strategies and more nuanced tuning of hyperparameters could benefit 

Hyperblock. Additionally, larger and more diverse datasets may highlight some benefits. However, the 

results of this investigation are clear: sometimes the simplest methods work. Efforts in improving public 

health ER tasks should shift towards prioritizing optimization. For example, if better coding and basic 

computational practices can enable larger volumes of comparisons to be performed independently of 

hardware requirements, blocking will be less constraining in the linkage pipeline. Our group aims to 

collaborate with the Data Science and Engineering unit at CHS to pursue optimization of machine learning 

linkage strategies while ensuring the high-quality products we produce remain.  
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